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ABSTRACT

A discussion is presented of all aspects of the General Relativity Theory
that can be tested at present or in the near future by performance of
interplanetary radar experiments. The assumptions underlying general
relativity and the mathematical concepts and techniques used are first
introduced. Then the approximate equations of motion, to the accuracy
needed for the solar system, are derived. Finally, the propagation of
electromagnetic waves according togeneral relativity is considered, and

expressions for the time delays and Doppler shifts are obtained.
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GENERAL RELATIVITY
AND ITS EFFECTS ON PLANETARY ORBITS
AND INTERPLANETARY OBSERVATIONS

I. INTRODUCTION

New radar installations, such as the 7840-Mcps Haystack facility developed by the M.I.T.
Lincoln Laboratory, will shortly provide much more data on the time delays and Doppler shifts
of interplanetary radar signals. These data, when combined with other optical and radar obser-
vations, will allow some of the predictions of Einstein's General Relativity Theory (GRT) to be
tested, Conventional astronomy assumes that the equations governing the motion of celestial
bodies are those of Newtonian Gravitational Theory (NGT), and that those governing the propa-
gation of electromagnetic signals are given by the Special Relativity Theory (SRT). The corre-
sponding equations derived from GRT are conventional in the lowest approximation, but small
correction terms appear in higher approximations; the tests will be performed to determine
the presence or absence of these terms.

In this report, we first discuss the assumptions that underlie GRT and introduce the mathe-
matical concepts and techniques that are to be used. We then obtain the approximate equations
of motion to the accuracy needed for the solar system. Since there is a good deal of contro-
versy among workers in the field with regard to how the approximate equations are to be obtained
from the exact ones, the views and assumptions of the various schools are discussed at some
length. All the approaches yield the same equations of motion for the solar system except for
higher-order terms which are so small as to be unmeasurable. The propagation of electro-
magnetic waves according to GRT is then considered, and expressions for the time-delay and

Doppler-shift corrections obtained.



II. THE FIELD EQUATIONS AND EQUATIONS OF MOTION

Let us begin by writing down the field equations of GRT and discussing the expressions in

them:1

1 _ 871G
Ry — 7 8y B = A To - (2-1)

In explanation of the notation, it must be understood that we are dealing with functions in a
four-dimensional space which has the property of being locally Minkowskian, i.e., we can, by
using suitably chosen coordinates, make an infinitesimally small neighborhood around each point
look like the usual space-time of special relativity. If we have an expression written down in one
coordinate system, then the indices tell us how to rewrite it in another coordinate system, the

general rule being2
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where ii and xi are the coordinates of the same physical point in the two systems. In Eq.(2-2)
and in the sequel we use the Einstein summation convention: A repeated latin index is to be
summed from one to four. Objects transforming according to Eq. (2-2) are called tensors and
because of the linearity of the transformation law, a tensor equation has the same form in all
coordinate systems. Thus Eq.(2-1) is shorthand for a set of 16 equations and can be written
down in any coordinate system.
SRT rests essentially on three postulates:3
(a) There is a class of privileged reference frames, called inertial frames,
in which the laws of physics are the same,

(b) The velocity of a light signal appears to be the same when measured
in each inertial frame.

(c) Space-time is homogeneous.

Translating this into mathematical language, we find that the Cartesian coordinates assigned to
an event in space-time in different inertial frames are connected by Lorentz transformations,
and, in order to have the equations retain their form, that basic equations should be tensor
equations (in SR we do not deal with general nonsingular transformations of the form of

Eq. (2-3) but only with Lorentz transformations). A Lorentz transformation is a linear trans-

formation with the property that

2 2 2 2 2
(xA—xB) +(yA—yB) +(zA—zB) —c(tA—tB)
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=(Xp —Xp)" + (T4 —Tp)" +(z, —Zp) =clt, =tg) (2-4)

if A and B are two events. By looking at two infinitesimally close events we can rewrite
Eq. (2-4) as



ds* = —ni].dxldx-' . —T]i].dildiJ = a8’ (2-5)

where
1 0 O 0
0o 1 O 0
nij = diagonal (1,1, 1,—1) = .n—ij ; (nij) = Lo : (2-6)
o o 0 —
and
x1=x . xzzy . x3=z , x? = et . (2-7)

Therefore, Lorentz transformations are linear transformations which leave the quadratic form
in Eq. (2-5) invariant.

We can also formulate Lorentz transformations in a general curvilinear coordinate system,
provided we know the relationship between the general coordinates and a set of inertial Cartesian

coordinates, by writing

xi = xi(Xi) (X1 are inertial Cartesian coordinates) (2-8)
in which case
ds® = —g. .dxidx = —q, .axiaxd (2-9)
ij ij
k ! k {
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g(x) = Naenene — (OX‘ Ny & =z == g ) (2-10)
ij axl axd k1 ij aXl 9% kt

and all tensor equations can likewise be modified trivially. Finally, we note that, relative to an
inertial system, a free particle moves in a straight line in space-time. Since a straight line
can, in ordinary space, be characterized by a variational principle (the arc length between two
points is shortest along the straight line connecting them), we might expect a similar result to

hold in Minkowski space.3 It turns out that if we demand

B
65 ds =0 (2-11)
A

where A and B are two points on the particle's trajectory, and

2

ds? = —y. dxlax] bR-12
ij

and use the standard techniques of the calculus of variations, then we obtain as Euler-ILagrange

equations

afxt (2-13)

If we transform to curvilinear coordinates and use Eq.(2-9) and the variational principle, then

in place of Eq.(2-13) we obtain4

dle
ds2

. J4
i dxk dx -0 (2-14)
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where
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Note that if i = My then Eq. (2-14) reduces to Eq.(2-13). A trajectory which satisfies Eq. (2-14)
is called a geodesic. The Flil are called Christoffel symbols of the second kind; they are not
quite tensors (if they were, they would vanish in all coordinate systems if they vanished in one)
but their transformation properties are of no interest to us. If we want the path of a light signal,
we cannot use ds as a parameter since ds = 0 along the trajectory; it can be shown that Eq. (2-14)
can then be replaced by4

aix iodx ax! ' dx' dx*

gk ax ax -0 - (@=47)

Equations (2-17) define a null geodesic; they determine the path and the parameter (called a
"distinguished parameter along the geodesic").

GRT holds that if matter is present, particles still move along geodesics, but the gij no
longer have the form of Eq.(2-10) so the geodesics are not straight lines. As stated above, we
assume space-time is locally Minkowskian so that it is possible to introduce coordinates in

terms of which

g;;(P) = ny; (2-18)

where P is any point, but in these coordinates gij(Q) o nij in general if Q is not in an infinites-
imal neighborhood of P. If it is possible to introduce a coordinate system in which gik = Mik
globally the space is called flat. As we will see, the left-hand side of the field equations (2-1)
vanishes for a flat space.

Given a set of sixteen functions gij(X) with gij = gji how can we tell if the space is flat? This
is a problem in partial differential equations, since it is obviously equivalent to asking under

what circumstances the equations

o - X0 x| ax? ax? L ax® ax® | ex? ax?
1 ox'  ox ox' ox’ ax"  ax? ax" ax)
k {
X
= T’kf %1_ _a_J_ [Eq,(2-10)]
X ox

have solutions for X'. The problem is quite analogous to the question as to whether a given

three-dimensional vector field can be written as the gradient of a scalar:

3 3
" a ? of «@ B
L Ayax® = ) = oax® . (2-19)
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The necessary and sufficient condition for Eq.(2-19) to be true is known from elementary

vector analysis to be
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The corresponding necessary and sufficient condition for Eq.(2-10) to be soluble 155'6
Rikem = ° (2-21)
and
2 2 2 2
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np k{"im Im" it .
Rik!m is called the Riemann or curvature tensor. The term "flat space" and "curvature" come

from the study of two-dimensional surfaces in ordinary three-dimensional space. For coordi-
nates on a curved surface, the two-dimensional Riemann tensor is proportional to the ordinary
curvature (Gaussian curvature) of the sur‘face.7 The tensors appearing on the left-hand side of the

field equations (2-1) are defined as®

Im

R, =g R (Ricci tensor) (2-23)

£imk

R = gikRik (curvature scalar) (2-24)

Because of the way it is defined, the Riemann tensor has a great deal of symmetry (it has only
20 independent components instead of 44 = 256) and its derivatives also satisfy some identities
(Bianchi identities). The situation is again analogous to the case of the curl of a vector in three

dimensions where, from Eq.(2-20) it can be seen that

Car = Cpa (2-25)

and

V- (VXA =0 (2-26)

with Eq. (2-26) being identically true, whether or not V X A vanishes. If we define

def
G = R

ik K % gikR (Einstein tensor) (2-27)

and

G (2-28)

Gik def j¢ km
=g fm

then the Bianchi identities take the form9
ik < .y def 3
gpl gl g pkol Thglk 5 | (2-29)

oG _
k ke ke 1k <
X

It is very important to notice that Eq. (2-29) is identically true because of the way the Einstein
tensor is related to the Riemann tensor. We accordingly conclude that a necessary condition

for the field equations of GRT to be consistent is



T;k =0 (2-30)
where

ik _ i km
T =g g Tlm . (2-31)

Note: It is conventional to consider two tensors which are related
as in Eq.(2-31) to be the "same" tensor and to speak of lowering and
raising indices by means of gij and gll, thus, e.g.,

- k _ k{
Ti; = 8Ty = 8118y
The same basic symbol is used for tensors related in this manner.

Tik is a generalization of the energy-momentum tensor of special relativity. In flat space,
if we have a tensor which satisfies the condition
ik

aTk = 1) (2-32)

ox

k : ;
where x are Cartesian coordinates, then

ik
g dx1 dxzdx3dx4

—

=0 (2-33)
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ox

and integrating over all space between two times, we find

Pl(t,) - Plt,) = & S axldx dx? [TH(w, 2%, 23, s + ... (2-34)
i def i
Pl °= 2 5 axtaxlax’TH(x!, x5, %2, 1) (2-35)
and
i def —
P! = (P,E/c) (2-36)
so if le vanishes sufficiently rapidly at spatial infinity, then the four quantities Pi are con-

served. If a theory is based on a variational principle and is Lorentz-invariant, such a Tik can
always be found if no "external fields" are present.io This situation is reminiscent of the re-

sult of nonrelativistic particle dynamics, where the energy and momentum of a system of parti-
cles are conserved if no external forces act on it; it can be shown that it is consistent to @nter—

k

pret P! as the energy-momentum vector of the relativistic field (the tensorial nature of T will

guarantee that the Pi transform like a four-vector under Lorentz-transformation), i.e., I_; is
the momentum and E the energy.

Suppose we wish to discuss "particles." A "particle," by definition, has a location, no
extension in space and is completely characterized by a parameter "mo" called its rest mass,

and by its "velocity." It has an energy and momentum related by

E"=c¢ P ImOZC . (2-37)



aid

We are thus more or less forced to take for Tik the form
ik o dx' dx® 8(F — R) de® = (1 ~v2/c®y dt®  (SRT) 2-38)
= moc de dt r s s = v Lo . ( =
This leads to
i - 1
P =(m yv,m cy) y = — (2-39)
[¢) o
[ 272
1—-v /c

which is the familiar result of relativistic mechanics.

How seriously should one take the idea of "point" particles? In electrodynamics, the use
of §-functions leads to infinite self-energies and other calamities which have to be argued away
by "renormalization"iz and which make the theory formally inconsistent (this formal inconsist-
ency may just be due to not using a sophisticated enough mathematical formalism for handling
6-like functions,13 but no one really knows). On the other hand, for extended matter distribu-
tions, no simple form for Tik is possible since extended matter must involve internal degrees
of freedom ("rigid" bodies can only exist if there are forces which act instantaneously at a dis-
tance and this violates the postulates of SRT),.14 People who are unhappy about using é-functions

but do not want to include internal forces explicitly, usually just let
m 8(¥ = R) = u(¥) (2-40)

where p(r) is "concentrated" around R, and take the §-function limit wherever it makes sense.15
This is called the energy-momentum tensor for "incoherent matter." In order to include the
interactions between the different parts of an extended body, elasticity theory and thermo-

15,17 It is not clear

dynamics must be used as a guide to determine the phenomenological form.
how a more fundamental level than the macroscopic one can be reached with this approach, but
on the other hand it may very well be that all classical theories are inherently macroscopic since
quantum theory becomes important for elementary particles and for very small distances. For
astronomical problems the various bodies are so far away that internal forces can be effectively
ignored and the forces between celestial objects can be calculated as if there were point planets
(provided "renormalization" takes place, since for self-interactions the particle approximation
is invalid); in the language of electrodynamics, a multipole expansion is used, keeping only the
monopole moment (the problem of incorporating higher moments, e.g., spinning particles, has

not yet been solved on a nonphenomenological 1eve1),18

We now come to one of the most remarkable results in general relativity.19 In 1927 Einstein
and Grommer found that the equations of motion of an isolated test particle could be derived
from the field equations. To obtain this we first rewrite Eq. (2-40) to make it a tensor under a

general transformation; the change is trivial:zo

. m c i k o
TR e S 0% GX_ g¥ T (2-41)
'\/—;E ds dt
where
g = det ,gik' . (2-42)



We then integrate Eq.(2-30) around a tube in space-time which encloses the world-line of the
test particle and no other matter, although other matter may be present outside of the tube.
The properties of the 6-function under integration then lead to the result that the particle obeys

the geodetic equations of motion:

dle + I‘i dxl dxk
2 kf ds ds
ds

=0 . (2-43)

There has been one bit of "swindling" though; Tik as defined in Eq. (2-41) depends explicitly
on gij’ and if we have a particle we would expect it to produce a metric tensor which is singular
at the particle (analogous to the Coulomb potential at a point charge). The product of a singular
function and a 6-function must be defined more carefully and in fact may be impossible to define.
It is for this reason that we call the particle a "test" particle and assume that it does not con-
tribute to the field so that the coefficient of (¥ — R) in Eq.(2-41) is well defined. "Test" par-
ticles make intuitive sense but may not make mathematical sense in a nonlinear theory like
GRT where the superposition principle does not hold. Nevertheless one is usually forced to
think in terms of test particles in order to relate the theory to pre-relativity physics.

How can we obtain Newtonian Gravitational Theory (NGT) from GRT'?’?'1 We would expect
NGT to apply when we can ignore the finite velocity of light both for test particles and for the
sources of the field as well as the nonlinearity of the field ("weak field") since NGT is a linear
theory. We therefore assume that it is possible to find a coordinate system in which the metric
can be expanded into a series

g =m. +Ah +APh, + ... (2-44)

1) 1] 420 51]

where A is a formal parameter, and we keep terms to order A. We further assume that in
this coordinate system the time dependence of gij is entirely due to the motion of the sources,
This corresponds, intuitively, to assuming there is no "gravitational radiation" incident on the
system which is therefore "isolated." (The term "gravitational radiation" is in quotes because
there is a great deal of controversy over what is meant by radiation in the theory and what
effect, if any, it would have on the motion of a system.)22 Since the velocities of the sources

are assumed small

9 _ |1 agi' N vsource L= (2-45)
~oa Bij| T |c Tat | ¢ Bhgy -
ox

or
LI AN LR B (2-46)
8x4 ¢ ax® ax”

where v is some characteristic velocity associated with the matter. For the same reason the

equations of motion of a test charge can be simplified by using

dx4
cdt

dx
cdt

oY et =
C

(2-47)

The equations of motion become, approximatelyZ3



2 2

d x c =
—= =+ = VAh
dtz 2 144 (2-48)
which is to be compared to Newton's Law
2>
d_>2< ==Vp . (2-49)
dt

In order to find the relation between h44 and the sources of the field, we use the Tik due to
1
incoherent matter and the small velocity approximation,

T,4 ®p >> (other components) (2-50)
where p is the density of matter, and obtainZ4
2 _ 8
v Ahyy=—=3 Go . (2-51)
1 c
We also identify
g442_1_27(p (2-52)
(o
2
Ve = +471Gp (2-53)

which is just the equation for the Newtonian potential if G is the usual gravitational constant.
The form of the results is most gratifying but it is very important to examine closely the extent

to which we have derived Newtonian Mechanics. We therefore note the following points:

(a) We have not solved the field equations but, rather, the formally
linearized equations obtained by writing gij = nij + )\hij and dropping

terms quadratic or higher in A. It is not known to what extent there
is a correspondence between solutions of the linearized equations

and of the full equations. Solutions of the linearized equations can
obviously be superposed to give a new solution, which is not generally
true of the nonlinear full equations; on the other hand, the full equa-
tions are covariant under arbitrary coordinate transformations and
the linearized ones are not.2

(b) NGT applies to bodies moving at arbitrary velocities in arbitrarily
strong gravitational fields, and the basic equations (2-53) and (2-49)
reflect this. There is nothing in these equations themselves that

forces us to use solutions with v/c small or for which |2¢/c2|<< 1.
Thus there are solutions of the approximate equations which violate
the conditions required to derive the approximate equations from the
full theory.

(c) For the N-body system the Newtonian potential, ignoring structure, is

N
o(F) =-G ), —— (2-54)

i=1

This serves to define the "mass" of the ith body in NGT which must,
of course, be determined experimentally by fitting parameters to a

solution, as must the gravitational constant. In the first approxima-
tion to GRT we end up with the same potential by identifying m; with
the integral over the body of the p in Eq.(2-53), In higher approxi-
mations, however, there will be, among other changes, corrections
to ¢ which will make it nonlinear in the individual masses. Since



the "Newtonian" mass is determined as that value of a parameter
which gives a best fit to a solution with ¢ in the form of Eq. (2-54),
we may expect the masses determined from GRT to differ from

the "Newtonian" values.

Before discussing higher approximations to the field equations, it is convenient to have on

hand a particular exact solution of the field equations, the Schwarzschild solution. This solu-

tion 1526
-ty ’
ds2 = —% (:Zdt2 - (1 + Z—(I)j) (dr'2 + r‘zde2 + r‘2 sinzedwz) (2-55)
Peg
where
r, = Z(zr_,_“ (2-56)

What physical situation does this correspond to? If we substitute the gik of Eq. (2-55) into
the field equations (2-1) we find Tik vanishes everywhere except at the point r = 0 when the gk
and their derivatives are singular. Thus the solution represents matter at the origin. In fact,
this solution could be obtained if the most general modification of the Minkowski metric in

spherical coordinates were demanded, i.e.,

2.2 2
ds2 =c dt” —(dr” + rzde2 + rz sinzedwz) (2-57)

which would not destroy its spherical symmetry in space and its symmetry with relation to past
and future time.27 The general solution, up to a coordinate transformation, is that of Eq.(2-55),
The quantity " r'o" appears as a constant of integration and its identifzication with the "mass" of
the matter at the origin is made by examining the expression for ds~ when r >> L)
2 "o\ 2.2 "o 2, 2.2, 2 .2_ .2

ds z(1—7)c dt —(1+—I;—)(dr' +r°de” +r sin"ede") (2-58)
and appealing to the correspondence with the Newtonian potential as given by Eq. (2-52). It is
therefore said that the Schwarzschild solution represents the field of a structureless point mass
fixed at the origin.

One must not be misled by the fact that we use the same symbols for the coordinates,
viz. (r, ©, ¢, t), in the Minkowski metric, in the Schwarzschild metric, and in the Newtonian
equations of motion. The Schwarzschild metric is that of a non-Euclidean space and there is
no quantity which has all the properties of the Euclidean radius vector (i.e., being equal both
to tge distance from the center and to the length of the circumference of a circle divided by
2m) &7

duce an infinite number of different "radius vectors," each of which can be identified with the

By changing the coordinates in which we express the Schwarzschild solution, we can pro-

Newtonian one far away from the source; all we must guarantee is that the asymptotic g.”. be of

the form

A il
(?) (2-59)

Baa~ 1T + Eup~0upt 0

and that the relationship between the old and the new variables be in some sense "smooth." The

whole question of which coordinates to use to express the Schwarzschild solution is a thorny one,

10



The coordinates used in Eq. (2-55) are the so-called "isotropic" on8526 and it will be noted that
844 = 0forr = r0/4, the so-called "Schwarzschild radius." There is a strong temptation to ig-
nore this since for all macroscopic bodies ry lies well in the interior where it would not be
expected that the Schwarzschild solution would be a good approximation to the real solution; it
is, however, at least esthetically disturbing. It has been found that the peculiar behavior at
r'o/4 is due to the choice of coordinates and can be eliminated by using different ones,27 but then
other strange things happen to light signals which penetrate the barrier. How much of this is
mathematics and how much is physics is not known as yet.28

The form of the equations of the geodesics will be different for each choice of "r," but, pro-
vided that Eq. (2-59) holds and that no spurious zeros or infinities are introduced by the change
of variables, the force will look like a "Newtonian" 1/r2 one plus additional terms which will be
small if "r" is identified with the "Newtonian" radial variable. As Edding’con29 points out, GRT
makes perfectly definite predictions; the ambiguity lies in Newtonian theory which assumes that
the force is strictly 1/r2 in nature. In GRT, "r" is just a marker. If we just use the asymptotic
form (taking the effects of planet-planet interactions into account in a manner that amounts to
using Newton's Law according to Eq. (2-52), then we have exactly the usual Newtonian mechanics.
The extra terms for the sun's field produce the famous advance of the perihelia of the planets.
The precession of an almost closed orbit clearly has an observable meaning which is relatively
independent of the choice of "r," so different "r"s give the same approximate formulas. This
mixture of GRT and NGT is, as is well known, in very good agreement with observation.

This ambiguity in "r," about which much has been written (much of it wrong!) is in fact to
be expected and should not bother us unduly. As Bergmann25 points out, the fact that the equa--
tions of GRT look the same in any coordinate system is not just a minor generalization on equa-
tions looking the same in any Galilean or Minkowskian inertial frame. Mathematically the dif-
ference is between invariance under an infinite dimensional Lie group and invariance under a
finite dimensional Lie group. The analogue of general invariance is gauge invariance in elec-
tromagnetic theory, the coordinates in GRT being the analogues of the potentials in electro-
dynamics. Given the electrodynamic potentials, we certainly can calculate the fields, but since
all we can observe in nature are gauge-invariant quantities, we never can determine the poten-
tials experimentally.

Much work has gone into the problem of determining a "complete set of observables" for
GRT, but little has been accomplished.25 No one has observed "r" for a celestial body; what
has been observed is light or radar reflected from a planet or, say, emitted by a comet. GRT
tells us how this electromagnetic radiation propagates and how it is affected by its passage
through a gravitational field. NGT makes no predictions along these lines. For different choices
of "r," the behavior of light rays will be different but quantities like time delays have an unambig-
uous meaning since they measure the time it takes for a signal to travel from one point on the
earth to the planet and back again. In different coordinate systems we would assign different
values of the "markers" to the positions of the earth and of the planet relative to the sun, but
the relationship between the assigned "markers" and the time delay is unambiguous and can be
checked experimentally.

We shall discuss optics in the Schwarzschild field further in a later section of this report.
Let us now turn to the problem of the equations of motion for an N-body system. If the solar

system is considered isolated, then the usual Newtonian equations determine the motion of the

11



planets relative to the sun if these relative positions and the corresponding relative velocities

are known at any one time. Therefore, what we ideally want in GRT is differential equations
which give us the acceleration of each body (specified by some parameters) in terms of the rela-
tive positions and velocities of the other bodies. By the very nature of a relativistic theory such
hopes are doomed except in the limit in which the velocity of light is infinite, i.e., in the "lowest"

approximation. There are three reasons for this:

(a) Retardation. Interactions between particles take place via fields which
propagate at the speed of light. Thus even if forces can be written
to depend on interparticle distances and velocities, they must refer to
retarded quantities, i.e., to the values occurring at an earlier time
such that signals emitted then will arrive at the present moment at the
particle of interest. In order to express everything in terms of vari-
ables at a single time, it is necessary to make a power series expansion
in the retardation time and cut it off before higher derivatives than the
velocity appear. There are further complications since at any given
time some of the energy and momentum of the system is "in transit" so
that, for example, the momentum of the system, which is approximately
conserved, is not just the sum of the momenta of the particles, and the
expression for the center of energy (the analogue of the center of mass)
becomes much more complicated than is the case in Newtonian theory.

(b) Proper Time. Relativistic equations of motion such as the geodesic
equation (2-14), always involve derivatives with respect to proper time
along the world line of the particle. To obtain differential equations in
terms of coordinate time, ds/dt must be expanded. This involves fix-
ing a coordinate system and the resulting expressions will involve the
"absolute" velocities of all the particles in this system rather than just
the relative velocities of the particles. There seems to be no way of
avoiding this. In the standard treatment of the GRT advance of perihe-
lion, the fields corresponding to the sun at rest are used so the absolute
velocities of planets become velocities relative to the sun. This, however,
ignores the forces exerted by the planets. If we try to include these
forces then the metric becomes time-dependent and we can no longer
exactly identify coordinate time with proper time at the sun, i.e., the
"time" in the static Schwarzschild solution, and so we run into the same
difficulties.

(c¢) Radiation. This is a basically unsolved problem. If we have a system
of charged particles then we expect them to radiate so that some kind of
"radiation reaction" force must be included in addition to the interparticle
forces. Since the radiation reaction force involves the time derivative
of the acceleration, it radically changes our concept of equations of mo-
tion and in fact converts them from differential to integro-differential
equations whose properties are not too well understood.30 Fortunately,
since we are forced for retardation reasons to expand in powers of 1/c
anyhow, we can avoid the radiation reaction force in the first two approx-
imations3! because the radiation reaction force is proportional to 1/c3,
Thus, if we are careful to keep only terms up to 1/c? we can "forget"
about radiation. In electrodynamics, in the lowest approximation we ob-
tain the Coulomb interactions only, while in the second approximation we
get the so-called Darwin Hamiltonian, run into absolute velocities, and
in fact get very similar results to those we will obtain in the post-Newtonian
approximation to GRT.

A careful discussion of all this, including an analysis of the Lorentz
covariance of the resulting theory (it is covariant with respect to

Lorentz transformations if we formally expand the transformation equa-
tions in powers of 1/c and keep terms only up to 1/c¢%) can be found in
Fock's monograph.32 Sweeping radiation under the rug in this manner

is fine formally, but a skeptic might ask why one believes the approxi-
mate theory bears any resemblance to the full theory. The only reply
one can make is to express the pious hope that radiation by slowly moving
charges is a small effect and can be ignored. Whether or not the Darwin
Hamiltonian is a good approximation to the full theory, its quantum
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theoretical analogue, the Breit Hamiltonian, seems to work very well

for two-electron systems.33 The situation in GRT is even worse since

no one knows what radiation means or whether or not it makes sense to

talk about radiation of energy and momentum by an isolated system.22

If one sticks to the linearized theory there is a complete analogy to

electrodynamics and radiation is well defined and goes as 1/c® (Ref. 34)

so one can again sweep it under the rug in the lowest few approxima-

tions. The difficulty is that no one has any idea of the amount of corre-

spondence between the linearized and full theories. In any case, we

can formally obtain the post-Newtonian equations of motion without

running into trouble, but it is difficult to go beyond.35

We now discuss the various derivations of the post-Newtonian equations of motion that
appear in the literature. All end up with the same equations although the derivations are super-
ficially different. The common idea is to expand the field equations in powers of 1/c as we did
in deriving the Newtonian equations. Then it is assumed that the energy-momentum tensor
(1) looks like a sum of §-functions corresponding to each particle or (2) represents incoherent
matter with the matter "concentrated" near the location of each particle or (3) vanishes outside
of a number of nonintersecting arbitrarily narrow tubes in space-time within which it becomes
singular. Much verbal blood has been shed by proponents of the different energy-momentum
tensors but it is obvious that they are all rather equivalent and so it is not surprising that they
all get the same equations. Whether one uses §-functions or "concentrated" matter is obviously
irrelevant except that with §-functions one has to drop some formally infinite terms which do
not appear when the matter is merely "concentrated.! The derivation based on solving the empty-
space equations in a multiply-connected region outside the world-lines of the sources is quite
different in form.
Consider first the 6-function appr‘oach.20 We have seen that to the lowest order the only

component of the metric tensor which is determined by comparison with Newtonian theory is

2
- _:%’ [Eq. (2-53)]

where ¢ is the Newtonian potential. The other components are highly arbitrary36 since if we

are given

gy =y + A [Eq. (2-45)]

we can perform an infinitesimal coordinate change

5 =xt 4 azlix) (2=00)

with ¢ '(x) constrained only to vanish at infinity and to satisfy
ol ot !
% =on & (2-61)
o
ox ox
which is necessary to preserve

n a n n
?} <<

X

(2-62)

Q
1y |°’

Thus both the barred and unbarred coordinate systems are equally suitable in the Newtonian

limit, but the metric tensor in the barred system has components
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3, at . > I ot .
g.: = g:.—A (— + __l) +0(A7) =7n.. + A ’h“— (—. + —J)] (2-63)
1 1 ax? ox H 1 ax? ox"
=gl (2-64)

Because of the restriction of Eq. (2-61),

— 2
844 ~ 844 + 0(A7) (2-65)

but all the other Hij are arbitrary although one must obviously choose some values for them in
order to pin down the coordinate system to first order. It is conventional to choose Ei]’ to make

the first approximation to the metriczo

2

aE* = (1 4 Q) o — (1 - 2—‘2’0)(de +dy® +azd) . (2-66)
C (4

The historical basis for this choice of metric is that the equations of the linearized theory
of gravitation then assume their simplest form.37 This choice is almost completely analogous
to that of the Lorentz Gauge for the potentials in electrodynamics, the coordinates in Eq.(2-66)

16,17 fow

being known as "harmonic" or "de Donder" coordinates. Except for Fock's school,
attach any special significance to harmonic coordinates in the full theory (Fock's point of

view is discussed on page 15). In any case, once the first approximation to hij has been chosen,
the second can be developed.

Accordingly, we substitute the Big of Eq.(2-66) into

ik M gxt X .

T = ) —2 o S ME=H [Eq. (2-42)]

a VT8
which yields, for example,20
5¢ v

44 _ 2 a a >_ B -

T = ) m_c <1+ g + 2> 6(f —R_) (2-67)
. e 2¢

. . . . .2
and solve the resulting field equations. One solution correct to second order is o

8ap = (1 —%) S p (2-68)

c
m (F-R) (F-R)
g 4=__G3 Z - e [7vaa+\7’a. _’a__ 5 e (2-69)
& 2¢ Ir-R_]| Ir-R_|
a a a
2 m_¢ mv2
. 2 207 2G a’a 3G W a a B
B S Sl Y IF-R | o L F-R.| o
a a a a

In order to obtain the last three equations it is necessary to ignore all terms which become
infinite at the positions of the particles. This can be "justified" by looking at "concentrated"
matter instead of at "point masses." The equations of motion of a test particle which moves in
such a field can now be obtained; they are just the equations of a geodesic and therefore follow

from the variational principle
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6 S‘ ds =0 [Eq.(2-11)]

which we may rewrite to introduce a Lagrangian

"
o

o ( Ldt (2-71)

- _me 38 .
L = —mc at (2-72)

where the coefficient "—=mc" is conventional. Although it is not necessary for our purposes, one
can obtain a Lagrangian for the N-body system. This is not the sum of the Lagrangians for each
body but is constructed so that it leads to the correct force on each body for a given motion of

the other bodies. The result iszo

mav: Gmb mav: Gmamb
L =5 143), — +Z—802 + ) 7
a b € Tab a a,b
2
Gm m, -~ A = b g
- Z 4_cz—r_— (7, » Vi #0, - Bgp) (v - Bl — Z ?;—r— o
a,b ab a,b,¢e € TabTac
where
- — A e —
Yab ~ Ir‘a N I’bl + TabMab " Ta " Tp (2-74)

and all terms in the sum which blow up are understood to be omitted.

In this way the GRT N-body problem can be reduced in second approximation to a problem
in classical mechanics with the Lagrangian in Eq.(2-73) replacing the one of ordinary Newtonian
theory. The Lagrangian belongs to the standard class of those which involve velocity-dependent
forces and a Hamiltonian can be constructed, conservation laws derived, etc., in the usual way.
Since we are just interested in the equations of motion, we will not discuss these points here,
but an exhaustive analysis may be found in the monograph of Infeld and Plebanski.38

There is, however, one very important result which follows from the fact that the post-
Newtonian equations of motion are derivable from the Lagrangian Eq.(2-73). In the discussion
of the Newtonian approximation we saw that although the equations of motion were unique, the
coordinate system was not. A similar result is true in the post-Newtonian approximation. The
post-Newtonian gij [Egs. (2-68) to (2-70)] are far from unique even with the asymptotic boundary
condition; the general solution involves four arbitrary functions which go to zero sufficiently
rapidly at spatial infinity. If one computes the Lagrangian which replaces Eq.(2-63) when the
general solution is used, however, one finds that it differs from Eq.(2-73) by a total time
der‘ivative,39 and it is well known from classical mechanics that this means that both Lagrangians
lead to the same equations of motion.z'9 It is not known whether similar results hold in higher
orders because of the ambiguities involving gravitational radiation.

Before discussing the equations of motion themselves, let us examine in some detail the
other derivations of the equations of motion which appear in the literature. We will first outline
Fock's derivation,16 which is straightforward, and then his motivations, which are controversial.40

Fock starts with the field equations
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ik~ 3 8P = X3 Tix (Eq. (2-1)]

which by the definition of R in Eq.(2-24) can be written as

_ 871G
ik = 4
c

R

(Ty — > g, T) . (2-75)

ik 2
He now decomposes Rik into a sum of terms, none of which separately transform as tensors.
Thus, symbolically,

_ 8nG

ik = 4
@

R A, +B (T

1
ik = Aik ik~ 72 Bikl) - (2-76)

Fock finds that if a particular class of coordinate systems, the so-called "harmonic" or
"de Donder," systems, are used, then the Bik in Eq. (2-76) vanish. Thus the Einstein equations
can be replaced by the equations

_ 871G

ik = 4
c

A (T T (2-77)

1
ik~ 2 8ik

Ci =10 (2-78)

where Egs. (2-78) are four equations which must be satisfied by gij in order to make the metric
"harmonic." Equations (2-77) and (2-78) are no longer "tensor" equations since Aik is not a
tensor, but are still a perfectly respectable set of partial differential equations. There is no
longer a need to worry about matters such as the Bianchi identity when solving Eq. (2-77) but of
course a solution of Eq.(2-77) is no longer necessarily a solution of the Einstein field equations;
it is only a solution if it also satisfies Eq.(2-78), in which case of course it will satisfy the
Bianchi identity in the harmonic coordinate system since Aik will be the Ricci tensor. As usual,
all this has an analogue in classical electrodynamics. Maxwell's equations can be written in
terms of the four potentials. Given any set of potentials which satisfy the equations, any other
potentials related to the originals by a gauge transformation yield the same fields. If an auxil-
iary condition is imposed on the potentials (e.g., the Lorentz condition) so as to simplify the
equations, then the resulting equations for the potentials are, in the first place, not completely
gauge invariant. In the second place, a solution of these equations is not in general a solution

of Maxwell's equations but only becomes so if it satisfies the auxiliary condition as well.

Roughly speaking, what Fock has done is to choose his coordinate condition to all orders,

ab initio, rather than to choose it in each order as has been done in the derivations of the New-
tonian and post-Newtonian equations outlined above. By solving Fock's equations in the Newtonian
and post-Newtonian approximations, the end result is, as mentioned before, the exact same
equations of motion,

Fock believes that Einstein's field equations are incomplete and that they should be supple-
mented with the requirement that only a special class of harmonic (or, in an iterative solution,
approximately harmonic) coordinates be used because they are the most "physical." In order to
clarify this, consider the case of a flat space-time. Suppose we decide to use spherical coordi-
nates in place of Cartesian coordinates. Then the mathematics singles out the point at the origin
of the spherical coordinate system (e.g., the transformation from Cartesian to spherical coordi-
nates is singular at the origin since © and ¢ are not well defined there) even though it is
"physically" just another point in space time and geometrically indistinguishable from any other

point.
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Mathematically speaking, a flat space-time has a high degree of symmetry since every
point is "equivalent" to every other point (homogeneity); and the fact that the gij are constants
in Cartesian coordinates reflects this more clearly while any other coordinates will introduce
"unphysical" singularities into the metric. This does not usually hamper physicists calculating
in spherical coordinates since the singular properties of the origin can more or less automat-
ically be taken into account by modifying boundary conditions (e.g., in quantum mechanics the
wave function in Cartesian coordinates must be finite everywhere whereas solutions of the Dirac
equation in spherical coordinates are allowed to be mildly singular at the origin). It is, however,
more serious in GRT where the metric itself is being studied to separate "physical" from
"coordinate" singularities.

It is found that if Fock's equations are solved for an empty space-time which is Minkowskian
at spatial infinity, the resulting coordinates are just a set of Cartesian coordinates (or, to be
more precise, the family of Cartesian coordinates related to each other by inhomogeneous
Lorentz transformations). A similar theorem can be proved even if there is matter present
providing a static solution (i.e., one for which the gij have no explicit time dependence) exists
in which case Fock's coordinates become asymptotically Cartesian at spatial infinity. Fock
wishes to generalize this and in particular to use only harmonic coordinates in discussing the
problem of gravitational radiation. It is at this point that many other relativists part company
with Fock, for if anything like gravitational radiation exists then there is no compelling reason
to assume that space-time at infinity is asymptotically flat and therefore there is no compelling
reason to consider solutions in harmonic coordinates as being freer of spurious "coordinate
singularities" than others. Accordingly, most relativists feel that although harmonic coordinates
may be convenient in particular problems where one is looking for a solution which is of the form
of a static solution plus a small perturbation, they do not have any special significance in more
general cases.

Finally, there is the Einstein-Infeld-Hoffman (EIH) method.

described above, it is based on a power series expansion in 1/c, the assumption that the metric

54,50 Like the other methods

is asymptotically Minkowskian at spatial infinity, and the assumption that all time dependence

is due to the motion of the particles. In its original formulation, the world-lines of the particles
were assumed not to intersect, were each enclosed in a "tube" and the field equations over all
space-time were then replaced by the equations, with no matter present, extended over the
multiply-connected region of space-time outside the tubes.

One solution is obviously a flat space-time, i.e., one in which nothing is singular anywhere.
Since this is what we expect if there is no matter at all, this solution is rejected as unphysical
and solutions are sought which become singular on the world-lines of the particles. The sur-
prising feature of GRT is that there are no solutions of the equations for arbitrary singularities
and world-lines. This is a consequence of the Bianchi identities. To see how this comes about,
we again turn to an analogy from electrodynamics,43 Suppose that the free-field Maxwell equa-
tions hold everywhere outside the world-lines of charged point particles and that these world-lines
do not intersect. The charge on one of these particles at a certain time can then be defined by

Gauss' law as

. I - 71 »
q(t) = 41r§E' ds (2-79)
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where the integral is extended over a closed spatial surface surrounding the particle at this
time and does not surround any other particles (this can be done because of the nonintersection

hypothesis). Then, making use of Maxwell's equations in free space and Stokes' theorem yields

dg . 4 § 2B ~d§:°—§$x§-d§:o . (2-80)

Thus there can be no solutions to Maxwell's equations in which the charges of isolated particles
change. This is of course just a special case of the well-known result that one can derive the
equation of continuity from Maxwell's equations and that therefore specified charge and current
distributions must be consistent with the equation of continuity or else there are no solutions to
Maxwell's equations.

There is one further important point to make. Suppose the particle does not carry a net
charge but is a dipole. We can visualize this dipole as consisting of two equal and opposite
charges which are so "close to each other" that the surface surrounding the particle always in-
cludes both charges. Then the integrals in Eqgs.(2-79) and (2-80) are always zero and solutions
can be found to Maxwell's equations in which the strength of the singularity, i.e., its dipole
moment, varies in time (imagine the two charges exchanging charge). So the equation of con-
tinuity by itself imposes a restriction only on a part of the possible singularity. Since the
electric field of a point charge is spherically symmetric and is an inverse square law force
while the field of a dipole or higher multipole is not spherically symmetric and is an inverse
cube (or higher) law force, the nature of the singularity can be identified by looking at how sin-
gular E becomes as the size of the tube decreases to zero. The multipole structure of the sin-
gularity can be "identified," and it can be said that, e.g., only a charge or only a dipole exists.

Obviously, this analysis depends critically on the linearity of Maxwell's equations. The
analogues of the equation of continuity in GRT are the four Bianchi identities which act as con-
sistency conditions and certainly impose four constraints on the world-lines of singularities.
The fact that the theory is nonlinear and has the same form in any coordinate system wreaks
havoc with the multipole expansion; in fact, the identification of singularities by means of the
dependence of the fields on the "size" of the world tube as it shrinks to a line can only be done
in low orders of approximation and it has so far proved impossible to characterize the properties
of mass distributions in an invariant manner'.44 A not entirely independent problem that also
arises is directly due to the nonlinearity of the equations which results in singularities being
piled on top of singularities at each level of approximation. These can be argued away in the

lowest orders by an averaging process (called "tweedling" by Infeld)i?”45

but again this is a non-
invariant procedure.

In the original EIH paper, no assumptions were made at the outset about the nature of the
singularities, but it was found, not unexpectedly, that assumptions had to be made about how
singular the fields would be on the surface of the tube42 and ETH assumed the least nontrivial
singularity. Infeld“ showed that this was equivalent, at least up to the post-Newtonial approxi-
mation, to assuming a §-function distribution of matter of the form of Eq.(2-41) and that by using
Eq.(2-41) from the beginning the calculation could be simplified tremendously.

We will now outline the essential features of Infeld's calculation. An expansion is made of
gij as in Eq.(2-43) with 1/c as the parameter of smallness, and of the energy momentum tensor
of Eq.(2-41). If all the terms of a given order are then collected, the field equations are re-

placed by an infinite set of coupled equations each of which has the semi-symbolic form
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Both the quantity N(gim), which represents the terms of a given order which arise from multi-
plying terms of lower order as required by the nonlinearity of the equations, and the terms Tim
which come from the energy momentum tensor, involve only quantities of lower order. Thus
the only new hij appear in the first term. K is linear in these quantities and in fact looks just
like the linear part of the Riemann tensor of Eq.(2-22). This is very useful for knowing just
how much freedom there is in choosing a coordinate system, up to this order, which will simplify
the equations. It also follows that Eq.(2-81) is consistent only if N + <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>